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Abstract: 

Ghrelin is a novel peptide that acts on the growth hormone (GH) secretagogue receptor in the pituitary 

and hypothalamus. It may functions as a third physiological regulator of GH secretion, along with GH-releasing 

hormone and somatostatin. In addition to the action of ghrelin on the GH axis, it appears to have a role in the 

determination of energy homeostasis. Although feeding suppresses ghrelin production and fasting stimulates 

ghrelin release, the underlying mechanisms controlling this process remain unclear. Our data suggest that insulin 

may suppress circulating ghrelin independently of glucose, although glucose may have an additional effect. The 

purpose of this study was to estimate the influence of insulin on circulating ghrelin using gamma distribution 

with the help of duality principle. 
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1. Introduction: 

Ghrelin is a novel peptide that acts on the growth hormone (GH) secretagogue receptor in the pituitary 

and hypothalamus, possibly functioning as a third physiological regulator of GH secretion along with GH 

releasing hormone (GHRH) and somatostatin. In addition to the action of ghrelin on the GH axis, it appears to 

have a role in the determination of energy homeostasis [1-2] & [4]. Ghrelin acts as an orexigenic hormone, 

stimulating both neuropeptide Y (NPY) and agoutirelated peptide, and thus feeding [6-7]. Although feeding 

suppresses ghrelin production and fasting stimulates ghrelin release, the underlying mechanisms controlling 

these processes remain unclear [9-10]. This relationship is the opposite of that seen with leptin [11], which has 

been shown to be increased by insulin [11]. Specifically, the roles that alterations in plasma glucose and insulin 

have in regulating ghrelin secretion have not been established. The purpose of this study was to estimate the 

influence of insulin on circulating ghrelin using gamma distribution with the help of duality principle. This 

paper classifies a doubly controlled process of servicing machines. The classical system treated by Talkacs is 

equipped with 𝑚 + 1 unreliable machines served by one repairman. In the present modification of this model, 

the failure rates and the repair time may be controlled with respect to the state of the system. The process 

describing the number of intact machines is considered. To derive its steady state distribution in the form of a 

simple explicit formula, the author introduces an auxiliary model with m unreliable machines and a single 

repairman who keeps working even when all machines are intact. This result is based on a duality principle 

applied to the process above. 

2. Stochastic Model: 

In [5] the author studied a multi-channel loss queueing system with control of input stream and service. 

The servicing facility of the system contained 𝑚 parallel channels processing a stream of singly arriving 

customers. No customer was accepted when the servicing facility was occupied. The input stream and service 

were subject to a comprehensive control. This model can also be interpreted as a system of 𝑚 unreliable 

machines served by a single repairman with corresponding service and failure rates control. More specifically, 

each of the working machines can break down with a rate dependent on the total number of intact machines. The 

repair time also depends upon the number of intact machines. The repairman is not idle even when all machines 

become intact. At these times the repairman leaves the system and comes back later with a new machine that 

immediately replaces an available defective machine. If no machine breaks down during the repairman’s 

absence, a substitution takes place at the repairman’s own choice, but the number of working machines does not 

change and this action is supposed not to affect the future status of the system. Since the repairman leaves the 

system to get new equipment, we can restrict his absence to a definite time. So the control can particularly be 

applied to this situation. Besides the clear advantages of this system as a doubly controlled transportation 

servicing model, it can also be viewed as a doubly controlled model of servicing machines. 

Another more popular model of servicing machines with idle periods is one with 𝑚 +  1 machines and 

with a single repairman who is either repairing defective machines or simply keeping watch when all 𝑚 +  1 

are intact. However, he is alert to start his service as soon as any working machine fats. Such a system is 
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probably more practical than the one described above although obviously with a more difficult analysis. Without 

control it was originally set and studied by [8].  

3. Model Description: 

Model 1: The system consists of 𝑚 +  1 unreliable machines served by a single repairman. Denote by 𝑍𝑡
1 the 

number of intact machines at time 𝑡 ≥  0. When the repair of a last defective machine is completed and the total 

number of intact machines becomes 𝑚 +  1, the repairman is idle until the next breakdown. Let 𝜏1 , 𝜏2,…  be the 

successive instants of the completion of machine repairs. The repair time of the 𝑛th machine is distributed in 

accordance with 𝐴 𝜉𝑛(𝑥) ∈  𝐴𝑘 𝑥 ; 𝑘 = 0,1,… ,𝑚  (a tuple of arbitrary 𝑑. 𝑓. ’s), where 𝜉𝑛 : = 𝑍𝜏𝑛
1 ,𝑛 = 1,2,….  

That is, the repair time depends upon the number of intact machines at the moment immediately before the 

completion of the preceding service. The working machines perform certain jobs. Within the interval [𝜏𝑛 , 𝜏𝑛+1) 

the continuous durations of each job are conditionally independent given 𝜉𝑛  and exponentially distributed with 

parameter 𝜇𝜉𝑛 ∈  𝜇𝑘 , 𝑘 = 0,1,… ,𝑚 + 𝑤 ⊂ ℝ+ ∖  0 .  

Model 2: There are a maximum of 𝑚 working unreliable machines and one repairman. The total number of 

intact machines at time 𝑡 ≥ 0 is denoted by 𝑍𝑡 . Unlike Model 1, there are no idle periods. At certain epochs of 

time the repairman temporarily abandons the system to acquire a new machine. Let 𝑇𝑛  be an epoch when a 

machine is completely repaired. If at this time the total number of intact machines is m, the repairman leaves the 

system and returns to the system at time 𝑇𝑛+1with a new machine to replace any machine that has failed during 

the repairman’s absence. In other words, if the repairman returns to fewer than m working machines, then the 

number of working machines increases by one. If no machine has failed to this time, a replacement still occurs 

but at the repairman’s own choice (in this case, without any effect on the system). In both cases used machines 

arc removed from the system. Consequently, 𝑇1 ,𝑇2 ,… are the moments when the repairman completes a job 

(repair of a machine or acquisition of new equipment). At time 𝑇𝑛  he begins with the repair of a current machine 

or leaves the system if no defective machine is available. At the time 𝑇𝑛+1 he completes the repair or returns to 

the system with a new machine. The length of the interval [𝑇𝑛  ,𝑇𝑛+1) is distributed according to the 𝑑. 𝑓. 
                                              𝐴𝑋𝑛 (𝑥) ∈  𝐴𝑘 𝑥 ; 𝑘 = 0,1,… ,𝑚                                                 (1) 

where 

                                                        𝑋𝑛 : = 𝑍𝑇𝑛 ,𝑛 = 0,1,…                                                          (2) 

For instance, control can be applied to the period of the repairman’s absence distribute differently from the 

repair time. The assumption about the failure rates is as in Model 1. Namely within the interval [𝑇𝑛  ,𝑇𝑛+1)  the 

continuous durations of each job are conditionally independent given 𝑋𝑛  and exponentially distributed with 

parameter 

                                   𝜇𝑥𝑛 ∈  𝜇𝑘 , 𝑘 = 0,1,… ,𝑚 + 𝑤 ⊂ ℝ+ ∖  0                            (3)    

As mentioned, this model is identical to the doubly controlled 𝑚−channel loss queueing system studied by the 

author [5], where 𝑍𝑡  denotes the number of customers in the system at time 𝑡. To explain equivalence between 

both systems, we use the mutual notation below. At time 𝑇𝑛   a customer departs from a source and at time 𝑇𝑛+1 

arrives at the system. The customer is served by one of the free parallel channels available, or is lost by the 

system if the servicing facility is busy. The length of the interval [𝑇𝑛  ,𝑇𝑛+1) is distributed as in (1) and (2), and 

the servicing policy is determined by (3). Within the interval [𝑇𝑛  ,𝑇𝑛+1) the service durations of customers in 

each of the channels are conditionally independent given 𝑋𝑛  and exponentially distributed with parameter 𝜇𝑋𝑛 .  

4. Connection between the Models: 

It can be shown that 𝜏1 , 𝜏2 ,… is a sequence of stopping times relative to the canonic filtering 𝜎 𝑍𝑢
1 ;𝑢 ≤

𝑡 ,  that 𝑇1 ,𝑇2 ,…  is a sequence of stopping times relative to 𝜎 𝑍𝑢 ;𝑢 ≤ 𝑡 , and that the processes 

 Ω1,𝔘1 ,  𝑃𝑥 𝑥∈𝐸1
,  𝑍𝑡

1; 𝑡 ≥ 0  → 𝐸1 =  0,1,… ,𝑚 + 1  and  Ω,𝔘,  𝑃𝑥 𝑥∈𝐸 ,  𝑍𝑡  ; 𝑡 ≥ 0  → 𝐸 =  0,1,… ,𝑚  

are semi-regenerative relative to these sequences (𝑐𝑓. definition in [5]). Consequently, 

 Ω1 ,𝔘1 ,  𝑃𝑥 𝑥∈𝐸 ,  𝜉𝑛 ; n = 1,2,…   → 𝐸 and  Ω,𝔘,  𝑃𝑥 𝑥∈𝐸 ,  𝑋𝑛 ; n = 1,2,…  → 𝐸 are embedded Markov 

chains (MC). Since the idleness of the repairman in the first model is distributed exponentially, it is easy to see 

that both MC’s are stochastically equivalent and they are obviously ergodic. Let  Ω1,𝔘1 ,  𝑃𝑥 𝑥∈𝐸 ,  𝑌𝑡
1; t ≥

0  → 𝐸1 and  Ω,𝔘,  𝑃𝑥 𝑥∈𝐸 ,  𝑌𝑡  ; 𝑡 ≥ 0  → 𝐸 be the semi-Markov processes associated with the sequences of 

stopping times above. Both are ergodic and their limiting probabilities are expressed through the invariant 

probability measure P of the MC(𝑋𝑛) or the MC 𝜉𝑛 . (Since (𝑋𝑛) and  𝜉𝑛  are stochastically equivalent, only 

one of them, say (𝑋𝑛), will be mentioned further.) Next we need the limiting probabilities 

                                   𝑦𝑘
1 ∶ =  lim𝑡→∞ 𝑃𝑥 𝑌𝑡

1 = 𝑘 =
𝑃𝑘𝑀𝑘

𝑃𝑀
,𝑘 ∈ 𝐸                                          (4) 

(𝑐𝑓. Cinlar [3]) where 𝑀𝑘  can be easily derived as 

                                  𝑀𝑘 ∶ =  𝐸𝑘  𝑇1 =  
𝑎𝑘                , 𝑘 = 0,1,… ,𝑚− 1

𝑎 +
1

𝜇(𝑚+1)
,                    𝑘 = 𝑚

                                (5) 

and 𝑃𝑀 is the scalar product of 𝑃 and 𝑀 =  𝑀0,𝑀1 ,… ,𝑀𝑚  𝑇   which can be expressed the formula 



International Journal of Applied and Advanced Scientific Research (IJAASR) 

Impact Factor: 5.255, ISSN (Online): 2456 - 3080 

(www.dvpublication.com) Volume I, Issue I, 2016 

6 
 

                                                             = 𝑃𝐴 + 𝑃𝑚
1

𝜇(𝑚+1)
 .                                                    (6) 

The duality principle between Models 1 and 2 is based on the following consideration. Let ℬ𝑛  and ℐ𝑛  denote the 

𝑛th busy period and the idle period following the 𝑛th busy period, respectively, in Model 1. Let 𝒞𝑡 ; 𝑡 ≥ 0 be the 

counting process associated with the point process  ℬ𝑛 ;𝑛 = 1,2,…   . It is readily seen that the processes 𝑍𝑡  and 

𝑍𝑡
1 during their busy periods are stochastically equivalent or formally 𝑃𝑥 𝑍𝑡 = 𝑘 = 𝑃𝑥 𝑍𝑡

1 = 𝑘/ℐ𝒞𝑡 > 𝑡 , 𝑘 ∈

𝐸, where the probability 𝑃𝑥 𝑍𝑡
1 = 𝑘/ℐ𝒞𝑡 > 𝑡  can be expressed as 

                                            𝑃𝑥 𝑍𝑡
1 = 𝑘/ℐ𝒞𝑡 > 𝑡 =

𝑃𝑥  𝑍𝑡
1=𝑘 ,   𝑍𝑡

1∈ 0,1,…,𝑚  

𝑃𝑥  𝑍𝑡
1∈ 0,1,…,𝑚  

  

                                                                               =  
0                                        , 𝑘 = 𝑚 + 1

𝑃𝑥  𝑍𝑡
1=𝑘 

1−𝑃𝑥  𝑍𝑡
1=𝑚+𝑤+1 

        , 𝑘 ≤ 𝑚
  .  

Therefore, 

                     𝑃𝑥 𝑍𝑡
1 = 𝑘 =  1 − 𝑃𝑥 𝑍𝑡

1 = 𝑚 + 1  𝑃𝑥 𝑍𝑡 = 𝑘 , 𝑘 = 0,1,… ,𝑚.                  (7)   

We now find  𝑃𝑥 𝑍𝑡
1 = 𝑚 + 1 . 

                      𝑃𝑥 𝑍𝑡
1 = 𝑚 + 1 = 𝑃𝑥 𝑌𝑡

1 = 𝑚 𝑃𝑥 ℐ𝒞𝑡 ≤ 𝑡/𝑌𝑡
1 = 𝑚                                     (8) 

where 

                                      lim𝑡→∞ 𝑃𝑥 ℐ𝒞𝑡 ≤ 𝑡/𝑌𝑡
1 = 𝑚 =

1

1+𝑎𝜇 (𝑚+1)
 .                                      (9) 

Let  𝜋𝑘
1 : =  lim𝑡→∞ 𝑃𝑥 𝑍𝑡

1 = 𝑘  . Then from (4) - (6), (8) and (9) it follows that 

                                                            𝜋𝑚+1
1 =

𝑃𝑚

𝑃𝐴𝜇  𝑚+1 +𝑃𝑚
 .                                               (10)    

Finally, (7) and (10) yield 

                                               𝜋𝑘
1 =   1 − 𝜋𝑚+1

1  𝜋𝑘 , 𝑘 = 0,1,… ,𝑚                                      (11)     

where 𝜋𝑘 = lim𝑡→∞ 𝑃𝑥 𝑍𝑡 = 𝑘  was obtained in [5]. 

5. Model Examples: 

(i) Recall that in case of Model 2 the repairman leaves the system when all machines are intact. 

However, the repairman may plan to leave for only a short duration. Assume his expected absence is = 𝑎𝑚 ≤
1

𝜇  𝑚
 . Here both 𝑎 and 𝜇 can be adjusted if necessary. For example, 

                                                   𝜇𝑗 =  
𝜇0, 𝑗 = 0,1,… ,𝑚− 1
𝜇,                      𝑗 = 𝑚

   

while 𝐴𝑗 (𝑥) is subject to no restriction. 

(ii) An undesirable situation occurs if during the repairman’s absence the number of working machines 

falls below the level 𝑚 − 𝑟, 𝑟 = 0,1,… ,𝑚 − 1. We calculate the probability of this event as 

              𝛾𝑟 : =  lim𝑡→∞ 𝑃𝑥 𝑌𝑡 = 𝑚,𝑍𝑡 < 𝑚 − 𝑟 =  𝜋𝑚 ,𝑛 −𝑚
𝑛=0  𝜋𝑚 ,𝑛

𝑚
𝑛=𝑚−𝑟 .                (12)   

To derive 𝛾𝑟  we observe that the first sum above is 

                                   𝑦𝑚
2 : =  lim𝑡→∞ 𝑃𝑥 𝑌𝑡 = 𝑚 =

𝑎𝑃𝑚

𝑃𝐴
                                                     (13)   

 (𝑐𝑓. the similar formula (4)) 

Also from [5] one can derive by the summation of the equations 

                            𝑃𝐴𝑛 𝜋𝑗𝑛 =
1

𝜇 𝑗
 𝑃𝑗  𝑝𝑗𝑘

𝑛−1
𝑘=0  , 1 ≤ 𝑛 ≤ min 𝑗 + 1,𝑚 , 𝑗 ∈ 𝐸.                     (14) 

Therefore, from (12) - (14) and [5] we have 

                                        𝛾𝑟 =
𝑃𝑚

𝑃𝐴
 𝑎 −

1

𝑚𝜇
   𝑃𝑚 ,𝑘

𝑛−1
𝑘=0

𝑚
𝑛=𝑚−𝑟  T,                    

(iii) Now we return to the relation between the models. Formulas (10), (11) and [5] can be combined to 

obtain the corresponding stationary probabilities 𝜋𝑘
1. An elegant expression follows when 𝜇𝑗 = 𝜇, 𝑗 ∈ 𝐸:                                                                                

(15) 

            𝜋𝑘
1 =

 𝑚+1 𝑃𝑘−1

𝑘 𝑃𝐴  𝜇 𝑚+1 +𝑃𝑚  
 , 𝑘 = 1,… ,𝑚 + 1 

And finally, when 𝑃𝐴 = 𝑎(𝑖. 𝑒. 𝑎𝑗 = 𝑎), (15) implies Takacs’ well known formula [8]. 

                                        𝜋𝑘
1 =

 𝑚+1 𝑃𝑘−1

𝑘 𝑎𝜇  𝑚+1 +𝑃𝑚  
 , 𝑘 = 1,… ,𝑚 + 1                                          (16)   

where the 𝑑. 𝑓. ’s  𝐴𝑗 (𝑥) are still arbitrary and possibly distinct and thus (16) holds under more general 

conditions. 

6. Example: 

Eleven young adult volunteers (9 women, 2 men) participated in the study. The age of the subjects was 

24 ± 4 yr (range 18–31 yr), and the body mass index was 22.1 ± 2.8 kg/m2 (18.4–26.6 kg/m2). All subjects were 

healthy and taking no medication. They were instructed to maintain their normal physical activity and to 

consume a normal diet containing 
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≥200 g of carbohydrate for 3 days before the study. Before the study, a small Teflon catheter was inserted into 

an antecubital vein for infusion of insulin and glucose. A second catheter was inserted in a retrograde direction 

into a wrist vein in the opposite arm for blood sampling. This was kept patent with a slow infusion of isotonic 

saline. The hand was then placed in a heated box to achieve a temperature of 65°C to obtain arterialized blood 

through the wrist catheter. After a baseline period of 1 h, a three step euhypohyperglycemic glucose clamp was 

then performed (6). A primed continuous infusion of insulin was administered at a rate of 1 mU
-1

kg
-1

 min
-1

. 

Each step of the study was maintained for 60 min, with a 15-min period of adjustment between steps. 

Throughout the study, plasma glucose concentrations were monitored every 5 min and used to regulate plasma 

glucose by the adjustment of a variable infusion of 20% dextrose. Plasma glucose was maintained at 90 mg/dl 

during the euglycemic phase of the study, at 50 mg/dl during hypoglycemia, and at 160 mg/dl during 

hyperglycemia. Two samples for measurement of insulin, GH, and ghrelin were taken in the hour preceding the 

study and repeated during the three steps of the clamp procedure. The glucose and insulin data from these 

studies are included in another study that examined the accuracy of glucose sensor measurements (7). 

 
Figure (1): Insulin concentrations during a stepped euhypohyperglycemic glucose clamp. 

 
Figure (2): Insulin concentrations during a stepped euhypohyperglycemic glucose clamp (Using Gamma 

Distribution) 

7. Conclusion: 

It has been repeatedly demonstrated that circulating GH levels are reduced in obese subjects who are 

insulin resistant and hyperinsulinemic. We have reported that such compensatory hyperinsulinemia suppresses 

IGF-binding protein-1 levels, which in turn may lead to increased bioavailability of free IGF-I and feedback 

suppression of GH secretion. It is intriguing to speculate that insulin-induced suppression of ghrelin may also 

play a role in the reduction in GH secretion observed in obesity. Duality principle with normal distribution gives 

the same as the medical report. There is no significance difference between medical and mathematical reports. 

The medical reports are beautifully fitted with the mathematical model. Hence the mathematical report {Figure 

(2)} is coincide with the medical report {Figure (1)}. 
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