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Abstract: 

The promoter sequence is the key regulatory region of a gene that controls and regulates gene 

expression. It has a major importance in the regulation of transcription, i.e. the transfer of the information 

contained in a DNA coding region into an mRNA transcript. Promoters play an important role in the regulation 

of gene expression at different locations and times during the life cycle of an organism or in response to internal 

and external stimuli. Investigating and unravelling the precise function of promoter components and the 

additional factors associated with their performance revealed new possibilities of genetic engineering. Thus, 

promoters have a huge influence in follow-on research and development in biotechnology, and a more detailed 

understanding will certainly further influence the development of GMOs. This review represents a summary of 

different types of promoters that have identified and characterized for gene transformation in plants. 
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Introduction:  

 Transgenic plant technology provides an indispensable and powerful tool for analysis of gene functions 

and stably expression of foreign genes (Daniell et al., 2001).Genetic engineering has been commonly used for 

introducing specific genes into plants for specific trait improvement because of the desirability in the global 

marketing. Many traits are included in biotechnology programs such as novel colour, grain size, quality and 

yield by the modulation of particular gene(s), without losing the useful agronomic qualities of the cultivar 

(Kasetsart et al., 2006).A high level of gene expression is usually needed for the production of important genes 

for agronomical or commercial purposes in transgenic plants. To achieve this goal, we need to understand and 

exploit the mechanisms, plant developed to regulate the expression levels of their various genes during 

evolution (Lewin, 2000). 

 Gene expression in eukaryotes is a multi-stage process controlled at transcriptional, post- 

transcriptional, translational and post- translational levels (Qu and Sivamani, 2006). Transcription, the initial 

step of gene expression and one of the most important intracellular steps influencing gene expression, is 

regulated by several cis-elements and trans-factors. The eukaryotic promoter, a key sequence or center of 

transcription regulation, determines the direction and efficiency of transcription and type of RNA polymerase, 

which binds to the promoter sequence and initiates the transcription (Zhu and Li, 1997). Promoter is a DNA 

sequence normally located upstream of the transcribed region. It contains TATA box and serves to determine 

the start site of transcription (Dynan and Tjian, 1985). 

 Promoter can be divided into two regions: a proximal region, commonly known as the core and a distal 

region. The proximal region or the core is thought to be responsible for the RNA polymerase II attachment and 

for directing a basal level of transcription (Rombauts et al., 2003). Core promoter elements such as the TATA 

box, BRE (TFIIB recognition element), Inr (Initiator), MTE (motif ten element), DPE (downstream core 

promoter element), and DCE (downstream core element) were typically found in focused core promoters 

(Juven-Gershon et al., 2008). The distal region of the promoter is believed to contain regulatory elements for 

spatiotemporal expression (Fessele et al., 2002).The challenge of multiple coordinated transgene expression can 

be addressed using a promoter diversity approach, where different promoters are used to drive different 

transgenes increases due to the lack of available promoters with suitable expression profiles (Peremarti et al., 

2010). 

 Plant promoter can be classified as constitutive, inducible and organ or tissue-specific.  A constitutive 

promoter directs the expression of a gene in all the tissues of a plant during various stages of development. A 

tissue-specific promoter directs the expression of a gene only in certain tissues and may or may not be activated 

during all the stages of development. An inducible promoter initiates gene expression in response to chemical, 

physical or biotic or abiotic stresses (Carneiro and Carneiro, 2011).  

Constitutive Promoter: 
 Constitutive promoters are the most common promoters used to drive the expression of various genes 

in development of transgenics. A constitutive promoter may contain an element which responds to activators 

present in all tissues, all the time. Alternatively, there could be a transcription factor present in all the tissues, all 

the time, interacting with an element of a constitutive promoter (Virupakshi, 2008).  
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CaMV 35s promoter is valuable because it provides high expression in all regions of the transformed plant and 

is generally available in the cassette vector used for transformation which facilitates the sub-cloning of the 

transgene of interest (Potenza et al., 2004).Although widely used, the CaMV 35s promoter as a certain 

limitations such as its poor performance in monocots, its suppression by feeding nematodes (Goddijn et al., 

1997; Urwin et al., 1997). For this reason, alternative virus promoter with similar or improved properties has 

been sort. Examples include promoters from Figwort mosaic caulimovirus (FMV; Bhattacharyya et al. 2002), 

Cassava vein mosaic virus (CsVMV; Verdaguer et al., 2002). Cestrum yellow leaf curling virus (CmYLCV; 

Stavolone et al. 2003), Mirabilis mosaic virus (MiMV; Dey and Maiti 1999) and Peanut chlorotic streak virus 

(Maiti and Shepherd 1998; Bhattacharyya et al., 2003). 

 The Commelina yellow mottle virus (CoYMV) promoter is active in tobacco (Medberryet al., 1992). 

The Sugarcane bacilliform virus (ScBV) promoter is active in monocots (banana, corn, millet and sorghum) and 

dicots (tobacco, sunflower, canola and Nicotiana benthamiana) and has shown to drive high level gusA 

expression in transgenic banana and tobacco plants (Schenk et al., 2001). 

 Another commonly used high-level, constitutive promoter is rice actin 1 gene (McElroy et al., 1990), 

ubiquitin promoter (Ubi) from maize and Arabidopsis (Cornejo et al., 1993). The ubiquitin extension protein 

(uep) gene, has been isolated from yeast and several plants, including tomato, barley and potato (Masura et al., 

2010). Other constitutive promoter are also available such as CaMV 19S (Balazs et al., 1985) and the tobacco 

promoter eIF4A-10 (Tian et al., 2005) (Kalai et al., 2008). 

Tissue-Specific Promoters: 
 In recent years, a large number of tissue/organ or stage specific promoters sequences have been cloned 

and characterized (Zheng et al., 2007). Spatially and developmentally controlled gene expression can be 

achieved using different tissue-specific promoters. A wide range of promoters have been identified in promoter 

trap programs and following the characterization of gene expression patterns. They allow specific gene 

expression in virtually any desired cell type, tissue or organs (Deveaux et al., 2003). 

(a) Seed Specific Promoters: Seeds are the storage organs which provide the optimal biochemical environment 

for the accumulation of large amounts of protein. In biofarming, recombinant protein production in seeds offers 

great benefits in terms of scalability and protein stability. The majority of available seed-specific promoters 

originate from seed-storage proteins (SSPs), such as rice glutelin and globulin, soya lectin and β-phaseolin. Seed 

storage promoters, arcelin 5-1 (arc5-1) and β-phaseolin from the common bean (Phaseolus vulgaris) have also 

been used to successfully express the murine single-chain variable fragment (scFv) G4 in transgenic 

Arabidopsis plants (Ezcurra et al., 2000). There is only one report of characterization of SAD genes from 

rapeseed (Brassica napus L.)(Jain et al., 1999). 

(b) Root-Specific Promoters: Root specific promoters have been of particular use in engineering resistance to 

nematodes and improving plant tolerance to environmentally stressful conditions such as water, salt and heavy 

metals. A number of plant gene promoters that confer root-specific expression have been isolated including the 

PR10 promoter from western white pine  (Liu & Ekramoddoullah, 2003), the IDS2 promoter from barley 

(Kobayashi et al., 2003), the isoflavone synthase gene promoters (IFS1 and IFS2) from soybean (Subramanian 

et al., 2004), the MsPRP2 promoter from alfalfa (Winicov et al., 2004). Root specific promoter such as the 

PHT1 gene of Arabidopsis (Koyama et al., 2005)(Kalaiet al., 2008). 

(c) Floral Tissue-Specific Promoters: In contrast to other plant organs, flowers are composite structures 

composed of several organs that form an ordered pattern. The typical flower consists of four organs arranged in 

whorls. The sepals consist of the outermost whorl followed by the petals in the next whorl and stamens (male 

reproductive organs) in the third whorl and carpels (female reproductive organs) in the innermost whorl 

(Theiszen and Saedler., 2001) Each of these whorls consist of unique genes targeted to the specific organ and 

several homeotic genes that affect the fate of organ primordial (Coen et al., 1990).Targeted genetic engineering, 

by utilizing promoters obtained from genes specifically expressed in a specific whorl is highly desirable for 

targeted gene expression and can be exploited by using specific promoters (Yang et al., 2011).Some of the traits 

that can be engineered in the floral tissues include increased vase life (Bovy et al., 1999; Chang et al., 2003; 

Serek et al., 2006),flower color modification (Tanaka et al., 2005; Savin et al., 1995; Aida et al., 

2000), fragrance (Zuke et al., 2002; Verdonk et al., 2005; Aranovich et al., 2007) and male and female sterility 

(Goetz et al., 2001; Mariani et al., 1992; Mitsuda et al., 2006) among others. Chalcone synthase (CHS) is 

synthesized in the flower corolla, tube and anthers and is important for the biosynthesis of flavonoid 

antimicrobial phytoalexins and anthocyanin pigments in plants (Ferrer et al., 1999).Various CHS promoters has 

been studied extensively in many plants, especially in Phaseolus vulgaris, antirrhinum, petunia and parsley 

(Faktor et al., 1997; Koes et al., 1990).  

(D) Fruit-Specific Promoters: A number of fruit-specific genes that are activated during ripening have been 

isolated from plant species with either climacteric or non-climacteric fruits. Although fruit-specific promoters 

have been isolated and analyzed for a number of species, tomato has long served as the primary model for the 

investigation of fruit and ripening specific promoters (Nicholas et al., 1995). It has also served as a heterologous 
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system to test the function of putative promoter sequences isolated from other fruit species, such as apple 

(Atkinson et al., 1998) and pepper (Kuntz et al., 1998). 

Fruit-specific promoters such as tomato polygalacturonase (Nicholas et al., 1995) and E8 (Deikman et al., 1998) 

promoters have attracted much interest because of their practical use in the manipulating fruit metabolism and 

the production of valuable pharmaceutical proteins such as antibodies, and edible vaccines in genetically 

engineered fruits. However, the essential cis-elements have not been identified. Recently, a novel cis-acting 

element that determines fruit-specific, high-level expression of cucumisin was identified and functionally 

characterized in melon (Yamagata et al., 2002).  

(e) Endosperm-Specific Promoters: Endosperm is a storage organ for starch and protein for cereal crops, 

which provide the major source of calories and proteins for humans. Improvement of the endosperm 

composition and quality via genetic modification is attractive, and there have been great achievements. Some 

endosperm specific expression promoters have been isolated and characterized from rice (Oryza sativa L.), 

wheat (Triticum aestivum L.), maize (Zea mays L.) and barley (Hordeum vulgare L.)(Xu et al., 2010). 

(f) Inducible Promoters: Inducible promoters are responsive to environmental stimuli and provide precise 

regulation of transgene expression through external control. Promoters that are induced under certain stress 

conditions, both biotic and abiotic are interesting biotechnological tools for use in plant breeding programs. In 

general, the stress-inducible promoters contain a cis-acting sequence which is recognized by specific 

transcription factors that induce the synthesis of proteins only under condition of stress (Jaglo et al., 2001). 

(g) Promoters Induced by Abiotic Stress: Hormones play a key role in regulating plant growth and 

development. Auxin play an important role in root formation, apical dominance, tropism, senescence and 

differentiation inside the plant cell. The most extensively studied auxin-responsive plant gene promoters are 

those from the pea PS-IAA4/5 gene (Abel et al., 1996). The promoters of the rice OsNCED3 and Wsi18 genes 

implicated in the synthesis and signaling of ABA, were highly inducible after drought, ABA, and high-salinity 

treatments in transgenic rice (Bang et al., 2013; Yi et al., 2011). The Arabidopsis Rd29A promoter was 

successfully used to mediate drought-specific expression of DREB1A in transgenic wheat (Pellegrineschi et al., 

2004). The common stress-responsive elements comprise the dehydration-responsive element DRE implicated 

in the regulation of cold and dehydration responses in Arabidopsis, and the ABA responsive element ABRE that 

regulates dehydration and salinity responses in Arabidopsis and rice (Yamaguchi- shinozaki and Shinosaki, 

2006). The GLP promoter isolated from Tamarix hispida which was highly induced by drought, salt and low 

temperature, its expression occurring in leaves and roots (Li et al., 2010). 

(h) Promoters Induced by Biotic Stress: 

 Chimeric promoters are becoming new powerful tool to direct gene expression in targeted locations or 

developmental stages of plants in response to specific biotic. Several chimeric promoters have been created for 

different purposes, such as enhancing activity of minimal promoters (Tornoe et al., 2002), achieving organ-

specific gene expression (Martinelli and Simone 2005), exploring the signaling pathway of plant-pathogen 

interaction (Rushton et al., 2002). Biotic stress-induced promoters also deserve attention because they are 

induced by the pathogens that are quickly activated in response to stress and are effective in plant defense 

process (McDowell and Woffenden, 2003). A well induced stress promoter is Gst 1 promoter from potato which 

activates gene transcription in responsive to infection by bacterial and fungal pathogens in transgenic apple 

(Malnoy et al., 2006). In transgenic citrus plants, the same promoter promoted gene expression in response to 

injury or to the pathogen Xanthomonas axonopodis sp. (Barbosa-mendes et al., 2009). Another promoter that 

has an important role in the plant defense system is the promoter belongs to class 10 PR (pathogenesis related). 

Coutos-thevenot et al., (2001) related the combination of this pathogen-inducible promoter and a defense gene, 

the Vst1 gene which increase tolerance against fungi in grape vine. 

(i) Status about Promoter: The identification and availability of the Cauliflower Mosaic Virus promoter 

(CaMV) was a big step from an industrial and molecular genetics point of view, since it was the first promoter 

showing a strong expression in almost all plant tissue and therefore it became almost universally applied. Until 

recently most of the antisense genes for different traits were cloned under the control of this promoter and 

introduced into various crops. However this „Constitutive‟ and strong promoter has several drawbacks, the gene 

of interest is also expressed in tissues and at times when it is not necessary or even unwanted (Trindade, 2003). 

A second generation of promoters comprises of mainly maize poly ubiquitin1 (Ubi 1) promoter (Christensen et 

al., 1992), actin (Act 1) promoter (McElroy et al., 1991), ubiquitin (OsUbi1) promoter (Bhattacharyya et al., 

2012), Cytochrome c1 (OsCc1) promoter (Jang et al., 2002), L- ascorbate peroxide (APX) and cystolic 6- 

phosphogluconate dehydrogenase (PGD1) promoter (Park et al., 2010). These promoters were somewhat better 

adapted to particular requirement; however a fine regulation of expression was not possible even with these 

promoters (Liu et al., 2013). 

Conclusion: 

 The most widely used promoter for directing strong constitutive expression of the target gene in 

transgenic dicotyledonous plants is CaMV 35S promoter, which is generally active at high levels even in the 

absence of stress. In contrast, most promoters of plant defensive genes are activated only after exposure to biotic 
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or abiotic stresses. The application of native plant promoters can also help to avoid transgene silencing, which is 

associated with the presence of promoters of non-plant origin in the plant genome. To overcome these 

limitations it is important to identify novel genes and their upstream regulatory regions. Also, the determination 

of gene expression pattern in response to stress and a better understanding of their functions in stress adaptation 

will provide the basis for an effective engineering strategy to improve stress tolerance in plants. 

Table 1: List of constitutive promoters 

S.No Promoter Origin Crop use References 

1 BSV 
Banana streak badna 

virus 
Banana, Schenk et al., (2001) 

2 CaMV 35S 
Cauliflower mosaic 

virus 

Apple, broccoli 

citrus 

chrysanthemum 

cocoa 

Mesa et al., (2004); 

Jong et al., (1994); 

Dhandi et al.(2009); 

Gasic et al.,(2003). 

3 CMPS 
Cestrum Yellow Leaf 

curling virus 
Grape Vaccari et al., (2009) 

4 
Mannopin 

synthase 
Gladiolus Gladiolus Kamo, 2003 

5 RolD A. rhizogenes Gladiolus Kamo, 2003 

6 Uep1 Oil palm Oil palm, tobacco Masura et al., (2011) 

7 Ubiquitin Grape, gladiolus Grape, gladiolus Dadi et al., (2009) 

Table 2: Examples of seed-specific promoter 

S.No Promoter Origin Crop use References 

1 2S Grape Grape, tobacco Li et al.,(2005) 

2 CuMFT1 Citrus Arabidopsis Nishikawa et al., (2008) 

3 Dc3 Carrot Arabidopsis Kim et al., (1997) 

4 HaG3-A Sunflower Tobacco Bogue et al., (1990) 

5 LeB4 Vicia faba Tobacco Baumlein et al., (1991) 

6 LegA Pea Helianthus Shirsat et al., (1989) 

7 NapA Brassica napus Tobacco Stalberg et al., (1996) 

8 Phas Bean Tobacco Sengupta et al., (1985) 

9 Psl Pea Tobacco Pater et al., (1996) 

10 Str 
Catharanthus 

roseus 
Tobacco Ouwerkerk and  Memelink, (1999) 

11 USP Vicia faba Tomato Fiedler et al., (1993) 

Table 3: Examples of root-specific promoter 

S.No Promoter Origin Crop use References 

1 B33 Potato Potato Farren et al., (2002) 

2 FaRB7 Strawberry Tobacco Vaughan et al., (2006) 

3 Glb3 5' Sesbania rostrata Lotus Szabados et al., (1990) 

4 MipB 
Mesembryanthemum 

crystallinum 
Tobacco Yamada et al., (1997) 

5 Npv30 Bean Lotus Carsolio et al., (1994) 

6 
PsENOD12A 

PsENOD12B 
Pea Vicia hirsuta Vijn et al ., (1995) 

7 RB7 Tobacco Tomato Vaughan et al., (2006) 

8 SLREO Tomato Tomato Jones et al., (2009) 

9 VfLb29 Vicia faba Vicia faba Vieweg et al., (2004) 

10 Sporamin Sweet potato Potato, tobacco 
Wang et al., (2002); 

Hong et al., (2008) 

Table 4: Examples of floral tissue-specific promoter 

S.No Promoter Origin Crop use References 

1 BAN215-6 Brassica campestris Tobacco Kim et al., (1997) 

2 CHS Bean 
Petunia, 

tobacco 

Koes et al., (1990) 

Schmid et al., (1990) 

3 END1 Pea Tobacco Gómez et al., (2004) 

4 GTCHS1 Gentiana triflora Petunia Kobayashi et al., (1998) 

5 LAT52 Tomato Lilium longiflorum Miyoshi et al., (1995) 

6 PsTL1 Pyrus serotina Tobacco Sassa et al., (1998) 
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7 SK2 Potato Potato Ficker et al., (1997) 

8 TomA108 Tomato Tobacco Xu et al., (2006) 

Table 5: Examples of Fruit-specific promoters 

S.No Promoter Origin Crop use References 

1 ACC-oxidase 
Peach, apple, 

tomato, banana 
Tomato, banana 

Atkinson et al., (1998) 

Barry et al., (1996) 

2 
ADP-glucose 

pyrophosphorylase 
Watermelon Tomato Yin et al., (2009) 

3 Expansin Cherry, cucumber 
Tomato, 

cucumber 

Karaaslan et al., (2010) 

Unni et al., (2012) 

4 Cucumisin Melon Melon Yamagata et al., (2002) 

Table 6: Examples of promoters induced by abiotic stress 

S.No Corresponding gene Inducer Organism References 

1 HSP1&2 Thermal shock 
Arabidopsis 

thaliana 
Takahashi et al., (1992) 

2 Rd29 Osmotic stress 
Arabidopsis 

thaliana 

Yamaguchi-Shinozaki and 

Shinozaki (1993) 

3 Adh 
Dehydration and 

cold stress 

Arabidopsis 

thaliana 
Dolfreus et al., (1994) 

4 rbcS-3A Light Pisum sativum Kuhlemeier et al., (1989) 

5 Chn48 Ethylene 
Nicotiana 

tabacum 
Shinshi et al., (1995) 

6 HVADhn45 Drought stress Hordeum vulgare Xiao and Xue (2001) 

7 PtDrl02 Methyl jasmonate Populus sp Zheng et al., (2011) 
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